350 research outputs found

    Sofic-Dyck shifts

    Full text link
    We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Inoue, Krieger and Matsumoto. Sofic-Dyck shifts are shifts of sequences whose finite factors form unambiguous context-free languages. We show that they correspond exactly to the class of shifts of sequences whose sets of factors are visibly pushdown languages. We give an expression of the zeta function of a sofic-Dyck shift

    Regular realizability problems and context-free languages

    Full text link
    We investigate regular realizability (RR) problems, which are the problems of verifying whether intersection of a regular language -- the input of the problem -- and fixed language called filter is non-empty. In this paper we focus on the case of context-free filters. Algorithmic complexity of the RR problem is a very coarse measure of context-free languages complexity. This characteristic is compatible with rational dominance. We present examples of P-complete RR problems as well as examples of RR problems in the class NL. Also we discuss RR problems with context-free filters that might have intermediate complexity. Possible candidates are the languages with polynomially bounded rational indices.Comment: conference DCFS 201

    Preface

    Get PDF

    A Coloring Problem for Sturmian and Episturmian Words

    Full text link
    We consider the following open question in the spirit of Ramsey theory: Given an aperiodic infinite word ww, does there exist a finite coloring of its factors such that no factorization of ww is monochromatic? We show that such a coloring always exists whenever ww is a Sturmian word or a standard episturmian word

    Specular sets

    Get PDF
    We introduce the notion of specular sets which are subsets of groups called here specular and which form a natural generalization of free groups. These sets are an abstract generalization of the natural codings of linear involutions. We prove several results concerning the subgroups generated by return words and by maximal bifix codes in these sets.Comment: arXiv admin note: substantial text overlap with arXiv:1405.352

    Enumeration and Decidable Properties of Automatic Sequences

    Full text link
    We show that various aspects of k-automatic sequences -- such as having an unbordered factor of length n -- are both decidable and effectively enumerable. As a consequence it follows that many related sequences are either k-automatic or k-regular. These include many sequences previously studied in the literature, such as the recurrence function, the appearance function, and the repetitivity index. We also give some new characterizations of the class of k-regular sequences. Many results extend to other sequences defined in terms of Pisot numeration systems

    A Characterization of Infinite LSP Words

    Full text link
    G. Fici proved that a finite word has a minimal suffix automaton if and only if all its left special factors occur as prefixes. He called LSP all finite and infinite words having this latter property. We characterize here infinite LSP words in terms of SS-adicity. More precisely we provide a finite set of morphisms SS and an automaton A{\cal A} such that an infinite word is LSP if and only if it is SS-adic and all its directive words are recognizable by A{\cal A}

    Describing the set of words generated by interval exchange transformation

    Full text link
    Let WW be an infinite word over finite alphabet AA. We get combinatorial criteria of existence of interval exchange transformations that generate the word W.Comment: 17 pages, this paper was submitted at scientific council of MSU, date: September 21, 200

    Degree of Sequentiality of Weighted Automata

    Get PDF
    Weighted automata (WA) are an important formalism to describe quantitative properties. Obtaining equivalent deterministic machines is a longstanding research problem. In this paper we consider WA with a set semantics, meaning that the semantics is given by the set of weights of accepting runs. We focus on multi-sequential WA that are defined as finite unions of sequential WA. The problem we address is to minimize the size of this union. We call this minimum the degree of sequentiality of (the relation realized by) the WA. For a given positive integer k, we provide multiple characterizations of relations realized by a union of k sequential WA over an infinitary finitely generated group: a Lipschitz-like machine independent property, a pattern on the automaton (a new twinning property) and a subclass of cost register automata. When possible, we effectively translate a WA into an equivalent union of k sequential WA. We also provide a decision procedure for our twinning property for commutative computable groups thus allowing to compute the degree of sequentiality. Last, we show that these results also hold for word transducers and that the associated decision problem is PSPACE -complete

    Decision Problems For Convex Languages

    Full text link
    In this paper we examine decision problems associated with various classes of convex languages, studied by Ang and Brzozowski (under the name "continuous languages"). We show that we can decide whether a given language L is prefix-, suffix-, factor-, or subword-convex in polynomial time if L is represented by a DFA, but that the problem is PSPACE-hard if L is represented by an NFA. In the case that a regular language is not convex, we prove tight upper bounds on the length of the shortest words demonstrating this fact, in terms of the number of states of an accepting DFA. Similar results are proved for some subclasses of convex languages: the prefix-, suffix-, factor-, and subword-closed languages, and the prefix-, suffix-, factor-, and subword-free languages.Comment: preliminary version. This version corrected one typo in Section 2.1.1, line
    corecore